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Abstract:
We present two fundamentally different approaches to detect collisions between two point clouds
and compare their performance on multiple datasets. A collision between points happens if they
are closer to each other than a given threshold radius. One approach utilizes the main CPU with
a k-d tree datastructure to efficiently carry out fixed range searches around points in 3D while
the other mainly executes on a GPU using a regular grid decomposition technique implemented
in the CUDA framework. We will show how massively parallel 3D range searches on a grid
based datastructure on a GPU performs similarly well as a tree based approach on the CPU
with orders of magnitude less parallelization. We also show how each method scales with varying
input sizes and how they perform differently well depending on the spatial structure of the input
data.
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1. INTRODUCTION

Advanced automation and telematics focuses on comput-
erization of processes. Factory management, the inspection
of tunnels and mines as well as the automation of machin-
ery need reliable, flexible and fast environment perception
and analysis methods. Three-dimensional perception of en-
vironments emerged in robotics applications. 3D scanners
such as the projection based kinect sensor or the time-of-
flight sensor kinect2 are available as consumer products
and professional high-end 3D laser scanners are state-of-
the-art in surveying. Combined with recent development in
the area of simultaneous localization and mapping, these
sensor systems deliver precise large scale 3D point clouds
of environments.

This paper focuses on the analysis of 3D point clouds
obtained in different environments. Given a 3D point cloud
of the environment, a 3D point cloud of a model, and some
trajectory, we move the model through the environment
and calculate collisions. This means, we calculate where
the model will interact with the environment. The problem
is highly parallelizable, as all points can be treated in
parallel. The paper compares algorithms using a search
tree, namely a k-d tree, running on a CPU with OpenMP
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with a GPU implementation that exploits a regular grid
decomposition.

Throughout the paper, we use a couple of realistically-
scaled real-world data sets to test the performance of our
collision detection methods. The first two data sets have
been acquired with a mobile mapping system based on
a FARO Focus3D sensor in factories of the Volkswagen
AG in Hannover and Wolfsburg. Aim of the research is to
support model switching by testing if new car models fit
the production line (Elseberg et al., 2014a). The third data
set has been acquired with a Riegl VZ400 laser scanner in
the El Teniente mine, the largest underground copper mine
in Chile. The fourth data set was acquired by a LYNX
mobile mapping system in a tunnel for trains. For the
latter two applications, telematics methods should be used
for testing if equipment can pass the environment.

2. RELATED WORK

Collision detection, which is also called interference de-
tection or intersection searching, is a well studied topic
in computer graphics (Jiménez et al., 2001; Lin and
Gottschalk, 1998; Bender et al., 2014; Mainzer and Zach-
mann, 2014; Tang et al., 2011) because of its importance
for dynamic computer animation and virtual reality appli-
cations (Tzafestas and Coiffet, 1996; Muñoz et al., 2014;
Hummel et al., 2012). On the other hand, their work is lim-



ited to collision detection between geometric shapes and
polygonal meshes whereas most sensor data is acquired as
point clouds. While collision detection is also relevant for
motion planning in the field of robotics, it is a less studied
problem there. Collision detection between point clouds
was for example researched by Klein and Zachmann (Klein
and Zachmann, 2004) who use the implicit surface created
by a point cloud to calculate intersections. Another exam-
ple is the recent work by Hermann et al. (Hermann et al.,
2014) who use voxels to check for spatial occupancy for
robot motion planning.

Existing techniques make use of very similar approaches.
One method is to apply a spatial hierarchical partitioning
of the input geometry using octrees (Jung and Gupta,
1996; Fan et al., 2013), AABB-trees (Wang and Liu, 2014),
BSP-trees (Ar et al., 2000) or k-d trees (Held et al., 1995).
Other solutions apply regular partitioning using voxels
(Garcia-Alonso et al., 1994; Hermann et al., 2014; Faas
and Vance, 2011). The goal of any partitioning is to be able
to quickly search and check only the relevant geometries
in the same or neighboring cells. The CPU based method
presented in this paper will make use of a hierarchical k-
d tree for the environment in combination with a regular
partitioning of the model into a grid of bounding spheres.

The k-d tree implementation bears similarities to R+-
trees (Sellis et al., 1987) insofar it recalculates a new
bounding box for each child node. In contrast to R+-
trees, the k-d tree implementation presented here does
not make efforts to create a balanced tree. In (Elseberg
et al., 2012) our k-d tree implementation was benchmarked
against three nearest-neighbor search libraries based on
the k-d tree data structure: ANN (Mount and Arya, 2010),
libnabo (Magnenat, 2014) and FLANN (Muja and Lowe,
2012) and came out amongst the fastest implementations.

GPU enabled collision detection algorithms are mainly
used in computer graphics for ray tracing. The algo-
rithms utilize GPUs using shader language programming,
OpenCL or Nvidia CUDA. The first GPU ray tracer was
using a uniform grid for acceleration and was implemented
in shader language (Purcell et al., 2002). Stackless k-d tree
packet GPU ray traversal implementation was introduced
in Popov et al. (2007). In Zhou et al. (2008) an algorithm
of constructing k-d trees using CUDA enabled GPUs is
shown. To cope with large datasets a method for incremen-
tal construction of Bounding Volume Hierarchies (BVH)
that incrementally constructs a BVH with quality compa-
rable to the best surface area heuristic (SAH) (MacDonald
and Booth, 1990) builders was introduced in Bittner et al.
(2015).

In the context of nearest-neighbor search in 3D point
datasets k-d tree (Qiu et al., 2009) and regular grid
decomposition are used (Bedkowski et al., 2012). The
performance of these two data structures is compared in
Bedkowski et al. (2013).

3. DESIGN AND IMPLEMENTATION

In the following section we describe the design and imple-
mentation of the two methods we present in this paper.
The first method is based on a k-d tree search which runs
entirely on the CPU. The second method is based on a

regular grid decomposition and runs on the GPU. Both
methods take the following inputs:

• a set of points making the environment E
• a set of points making the model M
• a set of 6DOF transformations making a trajectory

T and
• a search radius r

Both methods will find all points in the environment E
which fall within a certain radius r around any point of
the model M at any point on its trajectory T . The CPU
method works with double precision (eight bytes) while the
GPU based method is limited to floating point precision
(four bytes).

3.1 3dtk k-d tree

The collision detection method using a k-d tree was
described in detail in Schauer and Nüchter (2015). We
are using the method called kd-CD-simple from that
publication in these benchmarks. Using the nomenclature
for E, M , T and r from above, the basic algorithm is as
follows:

K ← create kd tree(E)
c← [false∀p ∈ E]
for all t ∈ T do

for all m ∈M do
m′ ← transform(m, t)
s← rangesearch(K,m′, r)
update colliding(s, c)

end for
end for

In other words: Create a k-d tree K from the environment
and create an array c which stores for each point in the
environment whether it collides with the model at any
point on the trajectory or not. Then do the following: For
each 6 DOF transformation t on the trajectory and for
each point m of the model, apply t to m, producing m′

and find all points s in K that lie within radius r around
m′ and update c to set these colliding points to true. Since
searches in the k-d tree are a read-only operation and since
even updating the same point in c from different threads
does not lead to any race conditions (because values are set
to true irrespective of their former value), the algorithm is
embarrassingly parallel. In other words, if one could run
|T | ∗ |M | threads in parallel, then the whole algorithm
would only take as long as the longest search in the k-d
tree would take.

3.2 regular grid decomposition

The GPU accelerated implementation of collision detec-
tion is based on regular grid decomposition and GPGPU
accelerated nearest-neighbor search. The collision detec-
tion algorithm, using the nomenclature from above with
E as the environment, M as the model, T as the trajectory
and r as the search radius is is follows:

Re ← create RGD(E)
S = ∅
c← [false∀p ∈ E]
for all t ∈ T do

M ′ ← transform in parallel(M, t)



S′ = find corresponding cells in RGD(M ′, E)
if S′ 6= S then

sync data with GPU memory(S′)
R′e ← create RGD(S′)
S = S′

end if
for all m ∈M do . In parallel

s← rangesearch(R′e,m
′, r)

update colliding(s, c)
end for

end for

The core concept of the algorithm is to use regular grid
decomposition Re to split large environment point cloud
E into smaller cells and then use only the cells which
intersect with the bounding box of the transformed model
for collision detection at each point of the trajectory T . For
each point of the trajectory, all points of the model M are
transformed (in parallel) using t, producing M ′. The axis
aligned bounding box of M ′ is compared to Re to find all
cells S′ containing possibly colliding points, ie. all points in
S′ must be more than r away from the boundary of the axis
aligned bounding box defined by S′. If there are new cells
in S′ compared to S, or some are no longer relevant, points
are copied to or removed from GPU memory respectively.
If the data in GPU memory was updated, for all points in
S′ a regular grid decomposition R′e is carried out. After
the data on the GPU has been made current, for all
points m in M the range search is performed with radius
r in R′e. Finally the array c is updated and copied back
to host memory. In this approach parallelism is limited
by two factors, device memory and number of cores.
All transformations are done theoretically in parallel, the
serialization process is low level and provided by the device
driver and depends on used device.

4. EXPERIMENTAL METHOLOGY

We tested our methods on expensive high end hardware
as well as on standard end-user hardware. That way, we
will be able to visualize the best-case performance and
compare it with performance on more affordable setups.

4.1 CPU tests

The tests of the 3dtk k-d tree implementation have been
carried out on two systems. We call the first system
“e5-2630 v3” which is a modern desktop system with
a 2.4 GHz 8 core processor and 32 GB of RAM. The
second test system is dual CPU server system with two
2.8 GHz 10 core CPUs (for a total of 20 cores) and
256 GB of RAM. We call the second system “e5-2680
v2”. Both systems are based on Intel Xeon processors
and support Hyper-Threading with 16 and 40 threads,
respectively. The operating system in both cases was
Debian unstable with GCC 5.3.1 and Linux 4.3.5 on the
amd64 architecture.

4.2 GPU tests

To test the GPU accelerated implementation 3 different
Nvidia graphic cards were used. The first GPU is a Geforce
Titan X with 3072 CUDA cores (base clock: 1000 MHz,

boost: 1075 MHz) and 12 GB GDDR5 384-bit memory.
The second one is a Geforce GTX980 with 2048 CUDA
cores (base clock: 1126 MHz, boost: 1216 MHz) and 4 GB
GDDR5 256-bit memory. The third one is Tesla K40 with
2880 CUDA cores (base clock: 745 MHz, boost: 810/875
MHz) and 12 GB GDDR5 384-bit memory. The GPU
performance is tested with the first system “e5-2630 v3”.

4.3 Datasets

We used four very heterogeneous datasets in our bench-
marks. Table 1 shows a comparison of their most im-
portant characteristics. Each dataset is comprised of the
pointcloud of the model, the pointcloud of the environment
and the 6 DOF trajectory that the model takes through the
environment (the first four columns in table 1). The tra-
jectory is a sequence of transformation matrices describing
the rotation and translation (but not scaling or shearing)
of the model at each step. In all experiments we used a
search radius of 10 cm. The shown timings are for the
collision search only and do not include the fixed times
per dataset that is needed to create the necessary initial
datastructures like the k-d tree for the CPU based method
or the regular grid decomposition of the environment for
the GPU based method.

The “El Teniente” dataset was collected in a stop-and-
go fashion in the El Teniente underground copper mine
in Chile. The trajectory follows the path along which the
scanner was moved in a closed loop. Due to the stop-and-go
scanning method, the point density is highest around the
positions where a scan was carried out. A synthetic point
cloud of a 3D model of a front loader was moved through
this dataset. The trajectory was produced by fitting a B-
Spline through the individual scanning positions.

The “Hannover” and “Wolfsburg” datasets were collected
in production facilities of the automotive company Volk-
swagen in their factories in Hannover and Wolfsburg, re-
spectively. Both datasets were collected using continuous
laser scanning on a mobile platform which was moved
on the production conveyor (Elseberg et al., 2014b). The
characteristics of these two point clouds are very similar
because of the similar environment and the similar scan-
ning methods. The main difference is, that the “Wolfs-
burg” dataset is much larger and produced the longest run
times in our test due to its size, the high sampling rate
along its trajectory as well as using a model with twice
the amount of points. We used pointclouds extracted from
actual CAD models of the Volkswagen Crafter and Tiguan
car bodies for the “Hannover” and “Wolfsburg” datasets,
respectively. The trajectory was retrieved from the scanner
positions and transformed such that a realistic simulation
of the movement of the car body along the production line
is achieved.

The fourth dataset called “Train Tunnel” was recorded in
a continuous fashion from a laser scanner on the back of a
train (Schauer and Nüchter, 2014). The dataset contains
a tunnel environment as well as through an open outdoor
environment before and after the tunnel. The model moved
through the environment was a manually scanned train
wagon which we moved along a trajectory that allowed
us to simulate a bogie size of 20 m of that train wagon,



Table 1. Datasets used for collision detection. The first column shows the name of the dataset,
the second column shows the number of points in the environment, the third column the number
of points in the model, the fourth column the number of discrete positions along the trajectory
and the fifth and sixth column the number of colliding points on the CPU and GPU, respectively.

Name #Environment #Model #Trajectory #colliding CPU #colliding GPU

El Teniente 806183400 100000 17795 35225149 35225399
Hannover 55872714 214489 17234 2495803 2495804
Wolfsburg 350109065 434700 398999 26089196 26089208
Train Tunnel 18919000 28622 19392 1627225 1627233
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Fig. 1. Box-and-whisker plot of 3dtk runtime on the
Hannover dataset by number of threads on the “e5-
2680 v2” setup (20 cores). The x-axis shows the
number of threads. The y-axis is scaled to show
relative runtime compared to using 20 threads. Values
indicate the multiple of the runtime per number of
threads compared to 20 threads. Higher values mean
faster computation. The runtime at 40 threads is close
to 1.2 times the runtime with 20 threads.

leading to collision that could not have been detected with
a structure gauge based method.

The last two columns of table 1 show a difference between
the number of colliding points that were found with each
method. An analysis showed that both methods produce
at least 99.999 % common points given our datasets. The
differing points were found to lie on the give search radius.
The number of common points is higher for datasets where
the input points are given with low precision values. This
lets us conclude that the differences stem from floating
point errors due to our differing algorithms as well as
from the CPU method using double precision while the
GPU method uses float precision. Both methods reliably
produce the same set of points between different runs and
are thus fully deterministic.

5. RESULTS

In this section we present benchmarks of our algorithms
in varying setups. We first present results specific to our
CPU based implementation, then GPU specific results
and lastly compare the runtimes of our CPU and GPU
implementations with each other.

5.1 CPU specific benchmarks

In an earlier publication (Schauer and Nüchter, 2015) we
claimed that our k-d tree collision detection algorithm
would scale completely linearly with increasing number
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Fig. 2. Performance of the GPU method by grid resolution
on the Hannover dataset. The x-axis shows the grid
size. The right-hand-side x-axis belongs to the line
plot and marks the resulting number of cells. The left-
hand-side x-axis belongs to the stacked bar chart and
indicates the computation time in seconds for each
step of the GPU computation.

of threads. In figure 1 we show proof of this claim. As
the test system had 20 individual CPU cores, performance
increases with the same slope until that number of threads.
After that, performance increases with a less steep slope
until 40 threads which can be explained by Intel Hyper-
Threading which is able to boost performance by an ad-
ditional 17.3 % compared to the 20 thread case. No fur-
ther performance improvement is gained after 40 threads,
which lets us conclude that the best CPU utilization is
achieved by using the exact same amount of threads as
virtual cores are available.

5.2 GPU specific benchmarks

In figure 2 we show the influence of grid resolution on the
performance of the GPU accelerated implementation. For
high number of cells the construction time of regular grid
is increased, but is still below 5% of the total computation
time. The most time is spent during nearest-neighbor
search. The computation time increases with the grid cell
size but also heavily fluctuates. These fluctuations can
be explained by slight variations in the decompositioning
resulting in different number of cells being needed on the
GPU for collision detection. These fluctuations in run-time



are thus deterministic and depend on the input model and
trajectory.

5.3 CPU versus GPU benchmarks

Figure 3 shows four graphs comparing the run-time of the
CPU and GPU implementations on our four datasets. The
CPU approach using the 3dtk k-d tree implementation
uses as many threads as the respective machines have
virtual CPU cores. The GPU approach using regular
grid decomposition uses 50 as the grid size. It can be
seen that the CPU and GPU based methods perform
differently well, depending on the dataset. The GPU
based method on the “titan X” platform is the fastest
on the “Wolfsburg” dataset but the CPU based “e5-
2680 v2” platform vastly outperforms the GPU based
methods on the Train Tunnel dataset. We attribute the
spatial differences between the datasets to this effect. The
“El Teniente” and “Train Tunnel” datasets are similar
in that the bounding box of the environment is mostly
empty space in both cases, but more so for the “Train
Tunnel” dataset which does not contain a loop like the “El
Teniente” dataset. Thus, the regular grid decomposition
for these datasets will yield a high number of empty cells
which will never be queried and the cells with points
which end up getting needed comparatively large and
overapproximate the actual space to check for collisions.
The Hannover and Wolfsburg datasets on the other hand
are indoor datasets where the points are more or less
evenly distributed over the constructed grid cells.

The last comparison we carried out was to evaluate the two
approaches by how they behave depending on the number
of points of the environment. For this purpose we created
111 random samplings of the environment point cloud
of the “Hannover” dataset in from 500000 points up to
55500000 points in steps of 500000. We then executed our
algorithms on the “e5-2680 v2” as well as on the “titan X”
platform for each of the resulting 111 datasets, each with
the original model and trajectory. The resulting runtimes
can be seen in figure 4. The graphs indicate a nearly linear
behaviour, but we suspect that a very shallow logarithmic
function underneath. More research is needed to properly
attribute the behaviour seen in the graph.

6. CONCLUSION AND OUTLOOK

This paper has presented a comparison of CPU and GPU
implementations for the collision detection problem. With
clever implementations, the run time is lowered to an
acceptable level for telematics applications.

Needless to say a lot of work remains to be done. While we
have now presented flexible CPU and GPU implementa-
tions, we further aim at improving run time. To this end,
we will look into the issue of regular resampling of the
trajectories through B-Spline approximation, support of
double precision calculations for the GPU method as well
as enhancing the GPU method with more collision detec-
tion methods from 3dtk (see Schauer and Nüchter (2015)).
Another useful feature would be a heuristic which is able to
pick a good cell size for the regular grid decomposition or
a way to work around the limitations of the GPU methods
for very sparse environments. Lastly, more experiments are

needed to verify the actual dependence of our algorithms
on the input pointcloud.
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