Robotics I

Lectures: 4 hours per week, English
Exercises: 2 hours per week, German and English
ECTS: 8

Description:

Robots play a key role in several fields such as industrial production and transportation, hazardous areas, medicine, and space. Nowadays they even start emerging into our ever day life in the form of various service robots. The lecture „Robotics I" deals with the technical and mathematical basis of manipulators as well as mobile robots. The contents include

- direct and inverse kinematics as well as dynamics
- path planning and control
- sensor systems

For this lecture, you should bring basic knowledge from linear algebra. Basics from physics and differential equations are useful, however not mandatory.

Exercises are performed in a weekly schedule with written tasks as well as programming tasks. Three additional exercises are conducted with our Kuka manipulators where you will learn to use and program the robots such that both of our robots can perform a cooperative task in an industrial scenario.

Table of Contents

1. Introduction
 1.1 History
 1.2 Application Areas of Robots
 1.3 Characteristics and Definitions

2. Manipulators – Direct Kinematics
 2.1 Mathematical Background
 2.1.1 Vectors and Matrices
 2.1.2 Operations on Vectors and Matrices
 2.1.3 Coordinates and Coordinate Frames
 2.1.4 Transformations, Fundamental Rotations, Composite Rotations
 2.1.5 Representation of Rotations
 2.2 Homogeneous Coordinates and Transformations
 2.3 Link Coordinates and Denavit-Hartenberg Representation
 2.4 Arm Matrix and Arm Equation

3. Manipulators – Inverse Kinematics
 3.1 Inverse Kinematics Problem
 3.1.1 General Properties of Solutions
 3.1.2 Uniqueness of Solutions
 3.2 Tool Configuration Vector
3.3 Numerical vs. Analytical Approach
3.4 Examples of Analytical Solution Approach
3.4.1 Inverse Kinematics of a four-axis SCARA Robot
3.4.2 Inverse Kinematics of a five-axis articulated Robot (Rhino XR-3)
3.5 Application in Industrial Work Cell

4. Manipulators – Work Space Analysis and Trajectory Planning
 4.1 Work Space Analysis
 4.1.1 Work Space of a five-axis articulated Robot (Rhino XR-3)
 4.1.2 Work Space of a four-axis SCARA Robot
 4.2 Workspace Fixtures
 4.3 Pick- and Place Motions
 4.4 Trajectory Planning
 4.4.1 Trajectories
 4.4.2 Speed Profiles
 4.4.3 Continuous Path Motions
 4.4.4 Interpolated Motions
 4.4.5 Approximated Straight-Line Motions for Special Robots

5. Manipulators – Dynamics
 5.1 Differential Motions
 5.1.1 Tool Configuration Jacobian Matrix
 5.1.2 Singularities
 5.1.3 Resolved-Motion Rate Control
 5.2 Manipulator Dynamics
 5.2.1 Lagrange Formalism
 5.2.2 Kinetic and Potential Energy
 5.2.3 Generalized Forces
 5.2.4 Dynamic Lagrange-Euler Model
 5.2.5 Direct and Inverse Dynamics
 5.2.6 Recursive Newton-Euler Approach

6. Mobile Robots
 6.1 Rolling Wheels, Constraints and Instantaneous Center of Curvature
 6.2 Mobile Robot Reference Frames
 6.3 Direct and Inverse Kinematics
 6.3.1 Differential Drive
 6.3.2 Synchro Drive
 6.3.3 Tricycle
 6.3.4 Ackermann-Steering for Vehicles with 4 Wheels
 6.4 Holonomic and Nonholonomic Constraints
 6.5 Holonomic and Nonholonomic Robots
 6.6 Kinematic Parameters, Wheel Constraints and Robot Constraints
 6.7 Degree of Mobility, Steerability and Maneuverability
 6.8 Classification of Mobile Robots
 6.9 Posture Kinematic Model

7. Mobile Robots – Motion Control and Path Planning
 7.1 Problem Description, Definitions, Obstacles
 7.2 Roadmap Methods
 7.3 Cell Decomposition Methods
 7.3.1 Exact
 7.3.2 Approximate
 7.4 Potential Field Methods
 7.4.1 Depth-First Planning
 7.4.2 Best-First Planning

8. Sensorics
 8.1 Sensor Criteria
 8.2 Position Sensors
 8.3 Velocity Sensors
 8.4 Distance Sensors
Literature

